2,935 research outputs found

    Zebrafish Cytosolic Carboxypeptidases 1 and 5 Are Essential for Embryonic Development

    Get PDF
    The cytosolic carboxypeptidases (CCPs) are a subfamily of metalloenzymes within the larger M14 family of carboxypeptidases that have been implicated in the post-translational modification of tubulin. It has been suggested that at least four of the six mammalian CCPs function as tubulin deglutamylases. However, it is not yet clear whether these enzymes play redundant or unique roles within the cell. To address this question, genes encoding CCPs were identified in the zebrafish genome. Analysis by quantitative polymerase chain reaction indicated that CCP1, CCP2, CCP5, and CCP6 mRNAs were detectable between 2 h and 8 days postfertilization with highest levels 5–8 days postfertilization. CCP1, CCP2, and CCP5 mRNAs were predominantly expressed in tissues such as the brain, olfactory placodes, and pronephric ducts. Morpholino oligonucleotide-mediated knockdown of CCP1 and CCP5 mRNA resulted in a common phenotype including ventral body curvature and hydrocephalus. Confocal microscopy of morphant zebrafish revealed olfactory placodes with defective morphology as well as pronephric ducts with increased polyglutamylation. These data suggest that CCP1 and CCP5 play important roles in developmental processes, particularly the development and functioning of cilia. The robust and similar defects upon knockdown suggest that each CCP may have a function in microtubule modification and ciliary function and that other CCPs are not able to compensate for the loss of one

    Analysis of Horizontal Axis Wind Turbine Array Optimization

    Get PDF
    Wind energy is the fastest growing form of renewable energy, with a multitude of possibilities for expansion. This, as well as other forms of renewable energy, will facilitate understanding of the growing concerns regarding global warming by decreasing our dependence on fossil fuels. Wind energy requires wind speeds of at least six miles per hour; therefore, only certain geographical areas are suitable for the use of this technology. The purpose of this experiment was to determine whether the orientation of an array of wind turbines increases or decreases energy production and efficiency. In this study, various arrays consisting of five wind turbines were tested. The total energy output of each array was tested using a wind tunnel from the wind energy lab at Georgia Southern University, INA219 current sensors, custom software written by Matthew Kiernan, and five “Cutting Edge Power” wind turbines. The most efficient array in terms of voltage, power and current was the 2-1-2 array, with average outputs of: voltage at 3.98 V, current at 440.73 mA, and power at 900.92 mW. The efficiency was determined through the power coefficient, which was 32.64%. The next most efficient array was the Left-Right Staggered array, with averages of: voltage at 3.90 V, current at 208.47 mA, and power at 838.08 mW. The efficiency was determined through the power coefficient, which was 32.13%. The Diagonal array was the third most efficient in overall energy output, with averages of: voltage at 3.75 V, current at 200.66 mA, and power at 789.07 mW. The efficiency was determined through the power coefficient, which was 29.54. The least efficient array array for energy output was Single File, with averages of: voltage at 2.79 V, current at 137.69 mA, and power at 451.05 mW. The efficiency was determined through the power coefficient, which was 18.31%. The results demonstrated that the close proximity of turbines negatively affects energy output, as observed through the turbulence that was produced. Possible errors observed were due to turbine models that did not perform as expected as well as the breadboard configuration

    Fluid/solid transition in a hard-core system

    Get PDF
    We prove that a system of particles in the plane, interacting only with a certain hard-core constraint, undergoes a fluid/solid phase transition

    Biochemical and genetic analysis of Ecm14, a conserved fungal pseudopeptidase

    Get PDF
    © 2020, The Author(s). Background: Like most major enzyme families, the M14 family of metallocarboxypeptidases (MCPs) contains a number of pseudoenzymes predicted to lack enzyme activity and with poorly characterized molecular function. The genome of the yeast Saccharomyces cerevisiae encodes one member of the M14 MCP family, a pseudoenzyme named Ecm14 proposed to function in the extracellular matrix. In order to better understand the function of such pseudoenzymes, we studied the structure and function of Ecm14 in S. cerevisiae. Results: A phylogenetic analysis of Ecm14 in fungi found it to be conserved throughout the ascomycete phylum, with a group of related pseudoenzymes found in basidiomycetes. To investigate the structure and function of this conserved protein, His6-tagged Ecm14 was overexpressed in Sf9 cells and purified. The prodomain of Ecm14 was cleaved in vivo and in vitro by endopeptidases, suggesting an activation mechanism; however, no activity was detectable using standard carboxypeptidase substrates. In order to determine the function of Ecm14 using an unbiased screen, we undertook a synthetic lethal assay. Upon screening approximately 27,000 yeast colonies, twenty-two putative synthetic lethal clones were identified. Further analysis showed many to be synthetic lethal with auxotrophic marker genes and requiring multiple mutations, suggesting that there are few, if any, single S. cerevisiae genes that present synthetic lethal interactions with ecm14Δ. Conclusions: We show in this study that Ecm14, although lacking detectable enzyme activity, is a conserved carboxypeptidase-like protein that is secreted from cells and is processed to a mature form by the action of an endopeptidase. Our study and datasets from other recent large-scale screens suggest a role for Ecm14 in processes such as vesicle-mediated transport and aggregate invasion, a fungal process that has been selected against in modern laboratory strains of S. cerevisiae

    Mineral Acquisition from Clay by Budongo Forest Chimpanzees

    Get PDF
    Chimpanzees of the Sonso community, Budongo Forest, Uganda were observed eating clay and drinking clay-water from waterholes. We show that clay, clay-rich water, and clay obtained with leaf sponges, provide a range of minerals in different concentrations. The presence of aluminium in the clay consumed indicates that it takes the form of kaolinite. We discuss the contribution of clay geophagy to the mineral intake of the Sonso chimpanzees and show that clay eaten using leaf sponges is particularly rich in minerals. We show that termite mound soil, also regularly consumed, is rich in minerals. We discuss the frequency of clay and termite soil geophagy in the context of the disappearance from Budongo Forest of a formerly rich source of minerals, the decaying pith of Raphia farinifera palms

    Robust Scheduling Scheme for Energy Storage to Facilitate High Penetration of Renewables

    Get PDF

    Carboxypeptidase O is a Lipid Droplet-associated Enzyme Able to Cleave both Acidic and Polar C-terminal Amino Acids

    Get PDF
    Carboxypeptidase O (CPO) is a member of the M14 family of metallocarboxypeptidases with a preference for the cleavage of C-terminal acidic amino acids. CPO is largely expressed in the small intestine, although it has been detected in other tissues such as the brain and ovaries. CPO does not contain a prodomain, nor is it strongly regulated by pH, and hence appears to exist as a constitutively active enzyme. The goal of this study was to investigate the intracellular distribution and activity of CPO in order to predict physiological substrates and function. The distribution of CPO, when expressed in MDCK cells, was analyzed by immunofluorescence microscopy. Soon after addition of nutrient-rich media, CPO was found to associate with lipid droplets, causing an increase in lipid droplet quantity. As media became depleted, CPO moved to a broader ER distribution, no longer impacting lipid droplet numbers. Membrane cholesterol levels played a role in the distribution and in vitro enzymatic activity of CPO, with cholesterol enrichment leading to decreased lipid droplet association and enzymatic activity. The ability of CPO to cleave C-terminal amino acids within the early secretory pathway (in vivo) was examined using Gaussia luciferase as a substrate, C-terminally tagged with variants of an ER retention signal. While no effect of cholesterol was observed, these data show that CPO does function as an active enzyme within the ER where it removes C-terminal glutamates and aspartates, as well as a number of polar amino acids

    Carboxypeptidase A6 in Zebrafish Development and Implications for VIth Cranial Nerve Pathfinding

    Get PDF
    Carboxypeptidase A6 (CPA6) is an extracellular protease that cleaves carboxy-terminal hydrophobic amino acids and has been implicated in the defective innervation of the lateral rectus muscle by the VIth cranial nerve in Duane syndrome. In order to investigate the role of CPA6 in development, in particular its potential role in axon guidance, the zebrafish ortholog was identified and cloned. Zebrafish CPA6 was secreted and interacted with the extracellular matrix where it had a neutral pH optimum and specificity for C-terminal hydrophobic amino acids. Transient mRNA expression was found in newly formed somites, pectoral fin buds, the stomodeum and a conspicuous condensation posterior to the eye. Markers showed this tissue was not myogenic in nature. Rather, the CPA6 localization overlapped with a chondrogenic site which subsequently forms the walls of a myodome surrounding the lateral rectus muscle. No other zebrafish CPA gene exhibited a similar expression profile. Morpholino-mediated knockdown of CPA6 combined with retrograde labeling and horizontal eye movement analyses demonstrated that deficiency of CPA6 alone did not affect either VIth nerve development or function in the zebrafish. We suggest that mutations in other genes and/or enhancer elements, together with defective CPA6 expression, may be required for altered VIth nerve pathfinding. If mutations in CPA6 contribute to Duane syndrome, our results also suggest that Duane syndrome can be a chondrogenic rather than a myogenic or neurogenic developmental disorder

    Double-Rashba materials for nanocrystals with bright ground-state excitons

    Full text link
    While nanoscale semiconductor crystallites provide versatile fluorescent materials for light-emitting devices, such nanocrystals suffer from the "dark exciton"\unicode{x2014}an optically inactive electronic state into which the nanocrystal relaxes before emitting. Recently, a theoretical mechanism was discovered that can potentially defeat the dark exciton. The Rashba effect can invert the order of the lowest-lying levels, creating a bright excitonic ground state. To identify materials that exhibit this behavior, here we perform an extensive high-throughput computational search of two large open-source materials databases. Based on a detailed understanding of the Rashba mechanism, we define proxy criteria and screen over 500,000 solids, generating 173 potential "bright-exciton" materials. We then refine this list with higher-level first-principles calculations to obtain 28 candidates. To confirm the potential of these compounds, we select five and develop detailed effective-mass models to determine the nature of their lowest-energy excitonic state. We find that four of the five solids (BiTeCl, BiTeI, Ga2_2Te3_3, and KIO3_3) can yield bright ground-state excitons. Our approach thus reveals promising materials for future experimental investigation of bright-exciton nanocrystals.Comment: 19 pages, 4 figure
    corecore